光伏是将太阳光辐射能直接转换为电能的新型发电系统,光伏大棚棚顶由太阳能光伏组件和薄膜组成。太阳能电池组件将太阳能转化为电能,产生的直流电会储存到汇流箱中,再通过电缆传输到并网逆变器,转换成交流电升压之后,并入国家电网成为生活用电。
光伏发电板在发电过程中不消耗任何能源、不排放有害气体,有效利用大棚棚顶,无需额外占用土地资源,将农业、渔业、风电和光伏发电两者巧妙结合起来,既满足生产的需要,又实现了光电转换,创造了全新的光伏发电模式,下面就是最新的几种光伏发电形式。
光伏发电作为清洁、绿色能源在全国范围内全面而且快速发展。但在中国东部人口稠密地区发展大型地面光伏电站项目受到了土地资源稀缺的限制。渔光互补作为土地资源综合典型案例有效地克服了这一难题。大规模下部养殖、上部发电的项目,可以集养殖、发电、旅游、休闲、垂钓、餐饮等各种优势于一身。
“渔光互补”是指渔业养殖与光伏发电相结合,在鱼塘水面上方架设光伏板阵列,光伏板下方水域可以进行鱼虾养殖,光伏阵列还可以为养鱼提供良好的遮挡作用,形成“上可发电、下可养鱼”的发电新模式。
光伏农业,是利用太阳能光伏发电无污染零排放的特点,与高科技大棚(包括农业种植大棚和养殖大棚)有机结合,在大棚的部分或全部向阳面上铺设光伏太阳能发电装置,它既具有发电能力,又能为农作物、食用菌及畜牧养殖提供适宜的生长环境,以此创造更好的经济效益和社会效益。主要有光伏农业种植大棚、光伏养殖大棚等几种模式。
农作物生长需要的光与光伏发电需要不同的光波,光伏日光温室能够实现发电种植两不误。由于太阳能电池组件会造成一定的遮光,每个大棚可根据不同农作物对光的需求,采用不同的装机容量设计,满足植物光合作用对光的需求。如苦瓜,生长过程中对透光度要求不高,可使用晶硅太阳能电池组件,多安装电池组件,提高装机容量多发电;光照要求高的五彩椒、番茄等茄果类蔬菜,则覆盖透光性好的改良太阳能电池组件,降低装机容量,增强透光性。
太阳能电池组件还能阻隔部分紫外线,反射昆虫繁殖需要的蓝紫光,可有效减少蔬菜病虫害,减少农药使用量,提高蔬菜品质和产量,是利用高新科技打造绿色生态农业的新模式。夏季,受高温影响,大部分保护地蔬菜在6-9月份无法正常成长。传统大棚夏季棚内温度达50℃以上,大部分蔬菜无法成活,只能种植两茬。
光伏大棚的优势在这里进一步体现:由于棚顶的光伏发电板减少了紫外线对作物的破坏,光伏大棚的蔬菜品质和产量也优于传统大棚。而光伏蔬菜大棚在冬季能防止棚内热量向外辐射,减缓夜间温度下降,达到保温的效果,免去了草帘覆盖这一工序,节省了人力和物力。同样,合理的遮光也为养殖业提供了良好的生长环境。而渔光互补的光伏项目则适合种植水生花卉和养殖鱼类,以此达到养殖和光伏双重收入。
风光互补发电站采用风光互补发电系统,风光互补发电站系统主要由风力发电机、太阳能电池方阵、智能控制器、蓄电池组、多功能逆变器、电缆及支撑和辅助件等组成一个发电系统,将电力供给负载使用。
夜间和阴雨天无阳光时由风能发电,晴天由太阳能发电,在既有风又有太阳的情况下两者同时发挥作用,实现了全天候的发电功能,比单用风机和太阳能更经济、科学、实用。适用于道路照明、农业、牧业、种植、养殖业、旅游业、广告业、服务业、港口、山区、林区、铁路、石油、部队边防哨所、通讯中继站、公路和铁路信号站、地质勘探和野外考察工作站及其它用电不便地区。
风光互补发电系统由太阳能光电板、小型风力发电机组、系统控制器、蓄电池组和逆变器等几部分组成,发电系统各部分容量的合理配置对保证发电系统的可靠性非常重要。由于太阳能与风能的互补性强,风光互补发电系统在资源上弥补了风电和光电独立系统在资源上的缺陷。同时,风电和光电系统在蓄电池组和逆变环节是可以通用的,所以风光互补发电系统的造价可以降低,系统成本趋于合理。